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1. INTRODUCTION
In quantum computing, a popular method for
solving the spatial search problem is to use
Quantum Walk (QW). Here, we restrict our-
selves to discrete time QW on a grid (which is
a popular topic as well). A Quantum Walk on
a grid can be defined by the following state

|ψ⟩ =
∑

v∈{0,1}

√
N−1∑
x=0

√
N−1∑
y=0

αv,x,y |v, x, y⟩ ,

and a local operator U . In order to search for a
set of M marked vertices, we apply an oracle
R = 1 − 2

∑
m∈M |d,m⟩ ⟨d,m| at each steps,

where |d⟩ is the diagonal state in the coin state
space. The final operator of the walk is

U ′ = UR.

Nahimovs and Rivosh [1] showed that some
configurations can impede the searching.

2. ANALYTICAL METHOD
We derive the asymptotical complexity for con-
figurations of two marked vertices using Bez-
erra et al’s [2] method. This method can be
summarized as such
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3. EXAMPLE OF OPTIMAL AND NON-OPTIMAL CONFIGURATIONS
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1(a) Case 1: Optimal configura-

tion. O
(√

N lnγ N
)

0 500 1000
steps

0.00

0.02

0.04

pr
ob

ab
ilit

y 
of

 su
cc

es
s

grid configuration

1(b) Case 2: Optimal configu-
ration but the hitting time and
probability of success are modi-

fied. O
(√

N lnγ N
)
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1(c) Case 3: Non-optimal config-
uration. Ω(N)

Figure 1: Three examples of spatial configuration for which the QWSearch algorithms behaves differently.

4. WHEN DOES EACH CASE HAPPENS ?
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2(a) Case 1: Half of the configurations are con-
cerned.
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2(b) Case 3: The configurations in white might
be non-optimal.

Figure 2: Known configuration for Case 1 and Case 3. First marked element placed at the center.

Necessary condition for non-optimality. While searching two elements m0 = (x0, y0) and
m1 = (x1, y1), a necessary (but not sufficient) condition to have a non-optimal complexity is

(x0 − x1)
2
(y0 − y1)

2 ≤ N.

5. CONFIGURATIONS ARE ALMOST ALL OPTIMAL
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• N − 1 possible configurations.
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)

non-
optimal configurations.

• The ratio of non optimal configu-
rations
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6. NUMERICAL SIMULATIONS
In these numerical simulations, we have com-
pared the average probability of success for
drawn randomly the configurations of M
marked elements with a classical method.

105 108 1011 1014 1017

N

100

101

102

103

104

105

106

107

M

Quantum
advantage

Classical
advantage

Critical Mc

M=1

7. CONCLUSION
In conclusion, we show that searching but non-
optimal configurations exist and we give a
necessary condition for a configuration to be
non-optimal. We bound the proportion of non-
optimal configurations and show that this pro-
portion is asymptotically negligible.
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