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1. INTRODUCTION
The perceptron is a popular machine learning
algorithm that solves binary classification prob-
lems. It’s complexity depends of how close
the classes are (statistical complexity) and of
the number of points (computational complex-
ity). Wiebe et al [1] proposed two models of
quantum perceptron that improve respectively
the statistical or the computational complexity.
We proposed a new model that improves both
and discuss about the computational statistical
tradeoff.

2. GROVER ALGORITHM
The Grover algorithm is a quantum algorithm
that finds a marked element in an unstructured
database of N elements in O(

√
N) steps. The

version of Grover we use is one that allow the
search of several elements.

• Probability to find a marked element :
≥ 1− ε

• Complexity : O(
√
N ln(1/ε))

3. BINARY CLASSIFICATION
The two hyperplanes on Figure 1 both sepa-
rates the classes. The green one is more bal-
anced and we call the distance between the
most balanced separating hyperplane and the
closest point the margin γ.

Figure 1: Example of binary classification on Iris
dataset.

4. THE ALGORITHMS
• CLASSICAL ONLINE PERCEPTRON: classical well known version of the perceptron. We test

each point and update the hyperplane when an error is found.

• ONLINE QUANTUM PERCEPTRON: algorithm of Wiebe et al [1] that improves computational
complexity. Same as the classical one but the search of a misclassified point is done via
Grover’s search.

• VERSION SPACE QUANTUM PERCEPTRON: algorithm of Wiebe et al [1] that improves statisti-
cal complexity. We draw several hyperplanes randomly and search via Grover’s search for
one that separates the classes.

• HYBRID QUANTUM PERCEPTRON: our algorithm that improves both complexities. We
draw several hyperplanes randomly and for each, we check if it separates the classes.

5. COMPLEXITY AND GENERALIZATION
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Table 1: Complexity and expected risk for each algorithm. The margin is noted γ, the number of pointsN and
the probability of success 1− ε. The expected risk is defined by E

S∼DN
R(hS) = E

S∼DN
E

(x,y)∼D
(1{hS(x) 6= y})

6. SIMULATIONS
Figure 2 shows ratio between the number of steps of the quantum algorithms and the number of
steps of the perceptron. Two dataset have been used, the Iris dataset is a dataset easy to learn for
the perceptron while the Hard dataset is specifiacally built to force the perceptron making a large
number of steps.

Figure 2: Ratio between the number of operations of quantum perceptron and classical perceptron.

7. CONCLUSION
In conclusion, the algorithm we propose pro-
vides better performances than it’s classical coun-
terpart both in term of computational and statis-
tical complexity. The generalization abilities also
compares favorably and simulations show bet-
ter results on complex datasets. Further work
can be made on the quantum implementation
(quantum embedding) and the quantum noise.
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