Spatial search with two marked vertices is optimal for almost all queries

Mathieu Roget, Hachem Kadri and Giuseppe Di Molfetta

Aix-Marseille Université, LIS

Mathieu Roget [Spatial search with two marked vertices is optimal for almost all queries](#page-41-0) $1/18$

Plan:

Introduction

Plan:

- **1** Searching one marked element with a quantum walk (literature)
- ² Searching two marked elements with a quantum walk (analytical analysis)

Introduction

Plan:

- **1** Searching one marked element with a quantum walk (literature)
- ² Searching two marked elements with a quantum walk (analytical analysis)
- Searching M marked elements with a quantum walk (statistical analysis)

Spatial search on a grid

 \sqrt{N}

The operator of the walk is

$$
U = \Sigma_{\mathcal{Y}}(C_{\mathcal{Y}} \otimes \mathbb{I}_N) \Sigma_{\mathcal{X}}(C_{\mathcal{X}} \otimes \mathbb{I}_N).
$$

The operator of the walk is

$$
U = \Sigma_{\mathcal{Y}}(C_{\mathcal{Y}} \otimes \mathbb{I}_N) \Sigma_{\mathcal{X}}(C_{\mathcal{X}} \otimes \mathbb{I}_N).
$$

The shift operator is conditioned by the coin state :

$$
\Sigma_x |\alpha\rangle |x, y\rangle = |\alpha\rangle |x - (-1)^{\alpha}, y\rangle
$$

$$
\Sigma_y |\alpha\rangle |x, y\rangle = |\alpha\rangle |x, y - (-1)^{\alpha}\rangle
$$

where $\alpha \in \{0, 1\}$.

The operator of the walk is

$$
U = \Sigma_{\mathcal{Y}}(C_{\mathcal{Y}} \otimes \mathbb{I}_N) \Sigma_{\mathcal{X}}(C_{\mathcal{X}} \otimes \mathbb{I}_N).
$$

The shift operator is conditioned by the coin state :

$$
\Sigma_x |\alpha\rangle |x, y\rangle = |\alpha\rangle |x - (-1)^{\alpha}, y\rangle
$$

$$
\Sigma_y |\alpha\rangle |x, y\rangle = |\alpha\rangle |x, y - (-1)^{\alpha}\rangle
$$

where $\alpha \in \{0, 1\}$. The oracle is given by

$$
R=\mathbb{I}-2\sum_{m\in\mathcal{M}}\sum_{0\leq i,j\leq 1}|i,m\rangle\langle j,m|=\mathbb{I}-2\sum_{m\in\mathcal{M}}|d,m\rangle\langle d,m|.
$$

The operator of the walk is

$$
U = \Sigma_{\mathcal{Y}}(C_{\mathcal{Y}} \otimes \mathbb{I}_N) \Sigma_{\mathcal{X}}(C_{\mathcal{X}} \otimes \mathbb{I}_N).
$$

The shift operator is conditioned by the coin state :

$$
\Sigma_x |\alpha\rangle |x, y\rangle = |\alpha\rangle |x - (-1)^{\alpha}, y\rangle
$$

$$
\Sigma_y |\alpha\rangle |x, y\rangle = |\alpha\rangle |x, y - (-1)^{\alpha}\rangle
$$

where $\alpha \in \{0, 1\}$. The oracle is given by

$$
R=\mathbb{I}-2\sum_{m\in\mathcal{M}}\sum_{0\leq i,j\leq 1}|i,m\rangle\langle j,m|=\mathbb{I}-2\sum_{m\in\mathcal{M}}|d,m\rangle\langle d,m|.
$$

Operator for the searching algorithm:

$$
\boxed{\mathsf{U}'\mathsf{=}\mathsf{U}\mathsf{R}}
$$

Signal of a quantum walk search

• Signal :
$$
p(t) \sim p_s \sin^2(\lambda t)
$$

\n- Signal:
$$
p(t) \sim p_s \sin^2(\lambda t)
$$
\n- Hitting time: $t_{opt} = \frac{\pi}{2\lambda} \sim \frac{\sqrt{\pi N \ln N}}{4}$
\n

- Signal : $p(t) \sim p_s \sin^2(\lambda t)$
- Hitting time : $t_{opt} = \frac{\pi}{2}$ $rac{\pi}{2\lambda} \sim \frac{\sqrt{\pi N \ln N}}{4}$ p 4
- Probability of success : $p_s \sim \frac{\pi}{4 \ln \pi}$ 4ln*N*

• Signal :
$$
p(t) \sim p_s \sin^2(\lambda t)
$$

• Hitting time :
$$
t_{opt} = \frac{\pi}{2\lambda} \sim \frac{\sqrt{\pi N \ln N}}{4}
$$

• Probability of success :
$$
p_s \sim \frac{\pi}{4 \ln N}
$$

Complexity

After repeating a logarithmic number of times, the algorithm succeed with probability 1−*ϵ* and has a complexity of

$$
O\left(\sqrt{N}\ln^{3/2}N\ln 1/\epsilon\right)
$$

What if there is two marked elements ?

- Do we keep the same complexity?
- Does this depend of the relative position?
- How the hitting time is affected?
- How the probability of success is affected?

What if there is two marked elements ?

- Do we keep the same complexity? Spoiler: Almost always
- Does this depend of the relative position ? Spoiler : Yes
- How the hitting time is affected?
- How the probability of success is affected ?

Case 1 : Nothing happens

Case $1:$ What do we know?

• Same complexity.

Case 1 : What do we know ?

- Same complexity.
- **o** Half of the configuration are concerned.

Case 1: What do we know?

- Same complexity.
- **o** Half of the configuration are concerned.
- Same hitting time.

Case 1 : What do we know ?

- Same complexity.
- **o** Half of the configuration are concerned.
- **•** Same hitting time.
- Probability of success twofold.

Case 1 : What do we know?

- Same complexity.
- **o** Half of the configuration are concerned.
- Same hitting time.
- Probability of success twofold.

Theorem

While searching two elements $m_0 = (0, 0)$ and $m_1 = (x, y)$, if $x + y$ is odd then

$$
p_s \sim \frac{\pi}{2\ln N}
$$
 and $t_{opt} \sim \frac{\sqrt{\pi N \ln N}}{4}$.

Mathieu Roget [Spatial search with two marked vertices is optimal for almost all queries](#page-0-0) 9 / 18

Case 2 : Some not too bad interferences

Case 2 : What do we know ?

Theorem

While searching two elements $m_0 = (0, 0)$ and $m_1 = (0, 2)$ it holds that

$$
p_s = O\left(\frac{1}{\ln N}\right)
$$
 and $t_{opt} = O\left(\sqrt{N \ln N}\right)$.

Case 2 : What do we know ?

Theorem

While searching two elements $m_0 = (0, 0)$ and $m_1 = (0, 2)$ it holds that

$$
p_s = O\left(\frac{1}{\ln N}\right)
$$
 and $t_{opt} = O\left(\sqrt{N \ln N}\right)$.

• Same complexity.

Case 2 : What do we know ?

Theorem

While searching two elements $m_0 = (0, 0)$ and $m_1 = (0, 2)$ it holds that

$$
p_s = O\left(\frac{1}{\ln N}\right)
$$
 and $t_{opt} = O\left(\sqrt{N \ln N}\right)$.

• Same complexity.

• The probability of success and hitting time may change.

 $\overline{Case 3}$: We lose optimality

Case 3 : What do we know ?

$$
\bullet \ \ p_s = O(1/N).
$$

Case 3 : What do we know ?

- $p_s = O(1/N)$.
- **•** Complexity in *O*(*N* ln*N*).

Case 3 : What do we know ?

Theorem

While searching two elements $m_0 = (x_0, y_0)$ and $m_1 = (x_1, y_1)$, a necessary (but not sufficient) condition to have a non-optimal complexity is

$$
\left(\overline{x_0 - x_1}\right)^2 \left(\overline{y_0 - y_1}\right)^2 \le N.
$$

Number of non optimal configurations

Theorem

While searching two elements, there is at most $O\left(\sqrt{N\ln N}\right)$ non-optimal ones.

Number of non optimal configurations

Theorem

While searching two elements, there is at most $O\left(\sqrt{N\ln N}\right)$ non-optimal ones.

 \bullet *N* − 1 possible configuration.

Number of non optimal configurations

⁻heorem

While searching two elements, there is at most $O\left(\sqrt{N\ln N}\right)$ non-optimal ones.

- \bullet *N* − 1 possible configuration.
- The ratio of non optimal configurations

$$
\frac{\mathcal{N}_{\text{non-optimal}}}{N-1} = O\left(\frac{\ln N}{\sqrt{N}}\right) \underset{N \to \infty}{\longrightarrow} 0.
$$

Searching several marked elements

M marked elements.

Searching several marked elements

- *M* marked elements.
- Spatial configuration of the marked element randomly and uniformly drawn.

Searching several marked elements

- *M* marked elements.
- Spatial configuration of the marked element randomly and uniformly drawn.
- What is the average probability of success?

Average probability of success

Mathieu Roget [Spatial search with two marked vertices is optimal for almost all queries](#page-0-0) 16 / 18

Do we have a quantum advantage ?

• The hitting time, probability of success and complexity will change depending of the spatial configuration of the marked elements.

- The hitting time, probability of success and complexity will change depending of the spatial configuration of the marked elements.
- For two marked elements, it is possible to have a non optimal configuration.

- The hitting time, probability of success and complexity will change depending of the spatial configuration of the marked elements.
- For two marked elements, it is possible to have a non optimal configuration.
- For two marked elements, almost all configurations are optimal.

- The hitting time, probability of success and complexity will change depending of the spatial configuration of the marked elements.
- **•** For two marked elements, it is possible to have a non optimal configuration.
- For two marked elements, almost all configurations are optimal.
- Statistics suggest that we lose the quantum advantage when the ratio of marked elements increases.